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Fast computation with spikes in a recurrent neural network
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Neural networks with recurrent connections are sometimes regarded as too slow at computation to serve as
models of the brain. Here we analytically study a counterexample, a network consishingtefjrate-and-fire
neurons with self excitation, all-to-all inhibition, instantaneous synaptic coupling, and constant external driving
inputs. When the inhibition and/or excitation are large enough, the network performs a winner-take-all com-
putation for all possible external inputs and initial states of the network. The computation is done very quickly:
As soon as the winner spikes once, the computation is completed since no other neurons will spike. For some
initial states, the winner is the first neuron to spike, and the computation is done at the first spike of the
network. In general, there afd potential winners, corresponding to the tbpexternal inputs. When the
external inputs are close in magnitudé,tends to be larger. IM>1, the selection of the actual winner is
strongly influenced by the initial states. If a special relation between the excitation and inhibition is satisfied,
the network always selects the neuron with the maximum external input as the winner.
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Extensive recurrent connections between neurons exist imost theoretical works on spiking recurrent networks have
the brain. This has inspired researchers to propose recurreanly studied synchronous and asynchronous states, in which
neural network models with multiple feedback loops forall neurons have similar spiking patterfi2,13. Computa-
many computations done in the brain, such as the winnetionally relevant states, such as WTA, often have neurons
take-all (WTA) computation[1]. A WTA results when the With completely different spiking patterns, and have been so
dynamics of the network leads to sustained spiking of dar neglected in theories of spiking recurrent netwdrks|.
single neuron or a group of neurorithe “winner”), al- In this paper, we show that recurrent networks can per-
though all neurons are driven by external inputs and are Ceform fast computations if the detailed dynamics of individual
pable of spiking in the absence of the couplings with othespikes are considered. Specifically, we analytically analyze a
neurons. WTA behavior in the brain's neural networks couldsimple spiking recurrent network that performs WTA com-
be the basis of perceptual decision makifiand control of ~ putation. The network consists &f integrate-and-fire neu-
visual attentior{3,4]. WTA can also be used for implement- rons. Each neuron has an excitatory connection to itself, and
ing universal computationgs] and a hierarchical model of inhibitory connections to all other neurofisee Fig. 1a)].
vision [6]. This organization of neurons is an idealization of neuronal

However, recurrent networks are often assumed to bétructures found in the brain, and has been studied previously
slow in converging to the computational results. ConseWith rate model$1] and numerical simulatior{®]. To facili-
quently, many researchers believe that recurrent connectiorigte analysis, we impose a structural symmetry on the net-
are not useful for carrying out brain functions that are ex-work by using neurons with identical parameters, excitatory
perimentally shown to be fast in execution, such as visual
scene recognitiof7] or orientation selectivity in primary

visual corte8]. These computations are shown to complete Unstable

as soon as the first few spikes appear in the networks afte W

the onset of the stimulus. The assumed slowness of the re i

current networks may have come from the use of the rate 0] WTA Only

models in the previous theoretical analysis of recurrent net-
works [1]. Rate models rely on spike rates averaged over
time scales much longer than time between individual
spikes; therefore, they are not adequate for addressing trar 0 ¥
sient dynamics over a time scale of a few spikes in the net- G
works. Numerical simulations of recurrent networks with (a) [h'}
spiking neurons have observed fast convergence of the net-
work dynamics to stable spiking patterns of the neurons, sug- g1 1. (Color) (a) Diagram of the network. There akeneurons
gesting fast computations with recurrent networks is indeedyye circles, six shown The red and black lines are excitatory
possiblef9,10]. However, theoretical proof of the rapid com- (strength Gg) and inhibitory connectiongstrengthG,), respec-
putations in recurrent network has been lacKihg. To date,  tvely. (b) Phase diagram. Herey=In(Vy/Vy,), and y=In[ly/(V,
—Eg)]. The red line is given bysg= ¢, and the black line is given
by Eq. (11). When G, ,Gg) is on the black line, the network al-
*Electronic address: djin@mit.edu ways selects the neuron with the maximum input as the winner.
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connections with the same strength, and inhibitory connecspike times have been proposed by various autfit2sl5|.
tions with the same strength. Also, we neglect the timeHowever, these maps are most useful for analyzing synchro-
course of the spikes and the time delay of spike transmisaous or asynchronous states of the network, since they all
sions. The external inputs are modeled as constant curren@gsume that neurons spike with the same or nearly the same
injected to the neurons. frequency. STPM is more general, and is especially suitable
When inhibition and/or excitation are strong enough, thefor analyzing states such as WTA, in which neurons have
network performs a WTA computation for all possible exter-Very different spiking frequencies. Maps similar to STPM
nal inputs and initial states of the netwofkee Fig. 10)]. may also be useful for analyzing other physical and blqlogl—
The computation is done as soonthe winnerspikesonce cal systems that can be modeled as pulse-coupled oscillators

This is because the inhibition from the winner prevents othe[lz’lq' )

neurons from spiking. In general, the selection of the winner W& now calculate the STPM relative to neurgrone of
can be strongly influenced by the distribution of the externaf"€N neurons. The membrane potentiglsj =1, ... N sat-
inputs and by the initial states of the network. When the'Sfy the following integrate-and-fire equations:
maximum external input is distinctively larger than all other V.

external inputs, the neuron with the maximum external input —a= Er—V,+1; —ng(t)VJ- —g}(t)(vj —Er), 1
will be the winner for all initial states of the network. Other dt

nmeeuraobr;znzano?etntrir;\cl)ss'[arhea\r/\? ;rzzzfn; Sg'nki‘:‘e'fotw:r'rhggal{}/here constantgg andl; are the membrane resting poten-
P 9 gn. ' fjal and the external input, respectively, ands the mem-

a group of neurons get external inputs close to the maximu . o | .
input, the network is multistable, and any neuron in therBrane time constant. Quantltlgf(t) and g;(t) are excita-

group can be the winner. As to which neuron will be thetoEry and inhibitory (c;c))nductances,l respectively, and satisfy
actual winner depends largely on their initial membrane poYi ((E])):GEEnTé(t_tJ _)' and gj(t):GIEm,mﬂEnTé(t
tentials. For the network to always select the neuron with~tm’). Here, Ge>0 is the strength of the self-excitatory
maximum input as the winner for all possible external inputsconnectionsG,>0 is the strength of the inhibitory connec-
and initial states, the excitation and inhibition must satisfy aions between all neurons, anff’ is the nth spike time of
special relationshigthe black line in Fig. lb)]. Previous neuronm. Both Gg and G, are dimensionless, as they are
studies of fast WTA computation in spiking recurrent net-defined relative to the passive leak conductance of the neu-
works have relied on intuitiofi3,14] and numerical simula- ron. We take the reversal potentials of the excitatory and
tions[9]. These studies have shown that strong inhibition carinhibitory connections as 0 arflg [17], respectively. Neu-
promote fast WTA computation. However, they have missedon]j spikes wherV;=Vy,, and is reset t&;=V,. Here, the
the role of the excitation and the complexity of the WTA constantsv, andV, are the threshold and the reset poten-
dynamics. Our analysis shows that a stronger self excitatiotials, respectively, and satisfir<V,<V,<0. The external
causes the winner to spike more frequently and inhibit otheinputs are assumed to be large enough to make neurons spike
neurons more effectively, and thus helps to promote a WTAn absence of couplings with other neurons, ilg> Vi,
computation even with a weak inhibition. The previous stud-— Eg=Il,, wherely, is the threshold current.
ies all assumed a particular initial state of the networks—all Consider the effects of thath spike of neurork at t
neurons are at the resting membrane potential, and proposedtf(”). Let the membrane potentials right before the spike to
that the winner will be the neuron with the maximum exter- ber(tf(”)’)ZVJ(”) ,j=1,... N.Obviously,V{V=V,,. The
nal input. In the brain, this assumption is too restrictive sinces function coupling between neurons cause discontinuous
the membrane potentials of the neurons often deviate froump of membrane potentials. Following the spike, the mem-
the resting membrane potential because of noise and the ifrane potential of neurok is reset, so/,=V,. The neuron
puts from other brain areas. Our analysis shows that initiafeceives an excitatory input immediately because of the
states of the network can strongly influence the selection ogxcitatory connection to itself, thereforé, jumps to a
the winner, depending on the distribution of the external in-new valueV,(t{""). Dividing both sides of Eq(1) with
pm‘?ﬁe dynamics of the network is analyzed by constructingvk(t) a?? integrating _from t(kn)i 0 t(an , we find

n)+
“spike-timed potential map”(STPM). For a network of 7IN(Vi(t"7)/Vo)= ~ 7Ge [18]. Therefore,
integrate—and-fire neurons with pulse cpuplings, the dynami- Vk(t(kn)+):(1_aE)VOv )
cal variables are the membrane potentials. Therefore, we can
construct maps between the membrane potentials at differegthere az=1—exp(—Gg). Similarly, since all other neurons
times. A STPM is constructed relative to the spike times ofreceive an inhibitory input from neurdq we have
one of theN neurons. In particular, the membrane potentials
just before the neuron spikes are mapped to those just before Vit ") =(1-a)V{V + a|Eg, ©)
the neuron spikes again. Once the map is constructed, we
analyze the iteration dynamics of the map to understand th&here,a;=1—exp(—G). To avoid runaway spiking of neu-
convergence properties of the spiking dynamics. Constructon k, we must haver(t(k”)+)<Vth, or equivalently ag
ing nonlinear maps is a common technique for analyzing the< (Vo— Vyn)/V,. This imposes an upper bound fGi: [the
dynamics of spiking neural networks and pulse-coupled osred line in Fig. 1b)]. With the constraint ol and Eq.(1),
cillators in general. Over the years, maps between phases itris easy to prove thaEg<V;(t) <V, for all time.
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Now we calculate the membrane potenti{aﬂé”“)} just  should be a winner over the other spiking neurons as soon as
before neurork spikes again. In between theth and ( it spikes once. Hence, the assumption that more than one
+1)-th spikes of neurok, neuronj #k can spike any num- neuron are spiking in the steady state is wrong, and the net-
ber of times depending 06¢,G, and{V{”}. The simplest ~Work is indeed operating in a WTA mode. From Ef), we
case is that all neurons do not spike in this time span. Thi§€€ that both strong inhibition and strong excitation helps to
gives the “0-spike branch” of the STPM relative to neuton ~ Promote the WTA computation.

Other cases, where some neurons spike before nekiron It is easy to prove that the neuron with the maximum
spikes again, are in general more complicated to construct€xternal input will be the winner as soon as it spikes once.

To calculate the O-spike branch, we integrsefrom t ~ For convenience of discussion, in the rest of the_ paper we
=t{"* until V, (t"* V)=V, using Eq.(1), at which point will label neurons such thalt,=1,=---=1y. We find I,
the neuron spikes again. From this we find that the time~ 1= 7(l;=Iw) for all 2<j<N since »<1. Therefore,
interval T, between successive spikes of neukois a con-  neuron one, which has the maximum external input, satisfies
stant: Tk=t(kn+1)—t(kn)=7'|n[(|k+ER—Vo+aEVo)/(|k—|th)]- Eqs._ (5), a_nd W|_II be the winner if it spikes once. If the

maximum input is so large that no other external inputs can

IntegratingV; from t{"* to t("* 1) for all other neurons, we ; . . . ,
gratingv; k K satisfy Egs(5), the neuron with the maximum input will be

find the winner for all possible initial conditions of the network.
V]_(n+ 1)_ Fki(ngn))= L+ Mkan) , (4) With our labeling scheme, this condition can be expressed as
where L;=1;+Eg—(l;+Er— aEg)exp(-Tc/7), and 0 = lin= 2= )/ 7. )

;M‘fk:(é_a')he)flpé._%h)ﬁl]'. quyation (4) ngvetrs] Bhe 4 n this case, other neurons canmosthave transient spikes
“SPIKE branch. ThiS branch IS a inéar map. For th€ U-SPIKG: ynair injtial membrane potentials are high enough. The

b_ranch to be valid, we must enforce the cc+)nsiste(r11c+yl)condiWTA is likely done as soon as tHest spikeappears in the
tion t_hat aII_ neurons do not s_p|ke betwegft (n?ndtk * network, since usually membrane potentials of the neurons
This is equivalent to the requirement thg (V™) <Vin, OF  are near the resting membrane potential initially, and the neu-
VIV <= (Vy,— L)/ M, for all j#k. ron with the maximum input will be the first to spike. Equa-

It is possible that the STPM relative to neuroias only  tion (7) is the condition for the winner to be completely
the O-spike branch. For this to happen, we need to show th@fetermined by the external inputs.

Vi< V9 Algebraic manipulations simplify this condition  If several external inputs satisfy E¢&) (this is possible

into since »<<1), more than one neuron can be the winner, i.e.,
the network can be multistable. In this case, the winner is
k= Tin> (1= 1) (5 determined by both the external inputs and the initial mem-
. brane potentials. The conditions féd <N neurons to be
for all j#k. Here,n=(Viy,— Vot agVo)/al . potential winners are
When Egs.(5) are satisfied, neurok becomes a winner,
i.e., the only neuron that spikes in subsequent time, as soon I === )/ 7, (8)
as it spikesonce Moreover, the membrane potentials of all
other neurons quickly settle down to periodic subthreshold L= > (11— ip). 9
oscillations. To see this, we note that the iteration dynamics
of the STPM has one fixed point. This fixed point is globally Equation(8) ensures that neurom + 1, . .. N are losers to

stable, since the slogd, of the STPM, now a linear map, is one of the neurons,1..,M, and Eq.(9) ensures that all
positive but smaller than one. The spiking of neutos  neurons 1...,M can be potential winners. The losing neu-
periodic right from the start, since its dynamics is unaffectedtons can at most have transient spikes, whereas the potential
by other neurons. Equationi§) carves out a subspace in the winners will be the only neuron spiking after it spikes once.
N-dimensional Euclidean space of the external inpyts The initial states of the network can strongly influence which

>ln.j=1,... N.Inthis subspace, neurdris the winner if  of the neurons L . . M spikes first, hence, will be important
it spikes once. for selecting the winner. A special case of multistability is
When <1, or equivalently when
ag(—Vo) + ailin>Vin— Vo, (6) In=Tth> (11— 1tn). (10
the network operates completely in a WTA mofieee  This condition is satisfied ne&g=1,=---=1y. Here, Egs.

Fig.1(b)]. In other words, for all possible external inputs, the (5) hold for all neurons in the network. Therefore, whoever
network always settles down to a WTA state. We can easilgpikes first will be the winner, and the WTA computation is
show this by the following proof-by-contradiction argument. alwaysdone as soon as tliest spikeappears in the network.
Suppose that there afd>1 neurons spike in the steady The initial membrane potentials have strong influence on de-
state. We can label these spiking neurons according to thgrmining the winner.

external inputs, so thdt=1,=---=1,,. It follows, then, When =1, or equivalently
I1— 1> 7n(l;— 1) for all 2<j <M. But the above relations
are nothing but Eqgs(5), according to which neuron one ag(—Vo) + ¢ lin=Vin— Vo, (11
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the network operates in a WTA mode unless the maximum oSpecial cases with a few neurons spiking can be analyzed by
the external inputs is shared by more than one neuron. Mor@onstrupting STPM beyond the 0-spike branch. Details will
over, the neuron with the maximum input will always be thebe published elsewhere.

winner regardless of the initial states of the network. In this

In summary, we have exhibited a recurrent network that

case, the network is a robust maximum input selector. Th@erforms a fast winner-take-all computation. To facilitate
spiking frequency of the winner monotonically increasesanalytical calculations, we made simplifications that are not
with the increase of the maximum input. This mode of com-Completely biological. For example, the mutual inhibitions
putation is useful for implementing universal computationbetween the neurons are really mediated by interneurons in

[5] or a hierarchical model of visiof6]. From Eq.(11) we
see that robust maximum selector requires a careful tuning
the strength of the excitation and inhibition. Previous intui
tive and numerical studies of WTA spikes have all misse
this point[3,9,14.

WTA mode. The network will still settle down to a WTA

state if Eq.(7) is satisfied. Otherwise, the network settles to

the brain. However, as long as the response time of the in-
derneurons is much faster than the spike time intervals of the

neurons, our results should still apply. Similarly, the omis-

sion of the time course of the spikes and the time delay of
spike transmissions are not important, provided that these

When > 1, the network does not operate completely in a‘umes are much smaller than the interspike intervals of the

neurons.
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