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Fast computation with spikes in a recurrent neural network
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Neural networks with recurrent connections are sometimes regarded as too slow at computation to serve as
models of the brain. Here we analytically study a counterexample, a network consisting ofN integrate-and-fire
neurons with self excitation, all-to-all inhibition, instantaneous synaptic coupling, and constant external driving
inputs. When the inhibition and/or excitation are large enough, the network performs a winner-take-all com-
putation for all possible external inputs and initial states of the network. The computation is done very quickly:
As soon as the winner spikes once, the computation is completed since no other neurons will spike. For some
initial states, the winner is the first neuron to spike, and the computation is done at the first spike of the
network. In general, there areM potential winners, corresponding to the topM external inputs. When the
external inputs are close in magnitude,M tends to be larger. IfM.1, the selection of the actual winner is
strongly influenced by the initial states. If a special relation between the excitation and inhibition is satisfied,
the network always selects the neuron with the maximum external input as the winner.
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Extensive recurrent connections between neurons exi
the brain. This has inspired researchers to propose recu
neural network models with multiple feedback loops f
many computations done in the brain, such as the win
take-all ~WTA! computation@1#. A WTA results when the
dynamics of the network leads to sustained spiking o
single neuron or a group of neurons~the ‘‘winner’’ !, al-
though all neurons are driven by external inputs and are
pable of spiking in the absence of the couplings with ot
neurons. WTA behavior in the brain’s neural networks co
be the basis of perceptual decision making@2# and control of
visual attention@3,4#. WTA can also be used for implemen
ing universal computations@5# and a hierarchical model o
vision @6#.

However, recurrent networks are often assumed to
slow in converging to the computational results. Con
quently, many researchers believe that recurrent connec
are not useful for carrying out brain functions that are e
perimentally shown to be fast in execution, such as vis
scene recognition@7# or orientation selectivity in primary
visual cortex@8#. These computations are shown to compl
as soon as the first few spikes appear in the networks a
the onset of the stimulus. The assumed slowness of the
current networks may have come from the use of the
models in the previous theoretical analysis of recurrent n
works @1#. Rate models rely on spike rates averaged o
time scales much longer than time between individ
spikes; therefore, they are not adequate for addressing
sient dynamics over a time scale of a few spikes in the n
works. Numerical simulations of recurrent networks w
spiking neurons have observed fast convergence of the
work dynamics to stable spiking patterns of the neurons, s
gesting fast computations with recurrent networks is ind
possible@9,10#. However, theoretical proof of the rapid com
putations in recurrent network has been lacking@11#. To date,
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most theoretical works on spiking recurrent networks ha
only studied synchronous and asynchronous states, in w
all neurons have similar spiking patterns@12,13#. Computa-
tionally relevant states, such as WTA, often have neur
with completely different spiking patterns, and have been
far neglected in theories of spiking recurrent networks@11#.

In this paper, we show that recurrent networks can p
form fast computations if the detailed dynamics of individu
spikes are considered. Specifically, we analytically analyz
simple spiking recurrent network that performs WTA com
putation. The network consists ofN integrate-and-fire neu
rons. Each neuron has an excitatory connection to itself,
inhibitory connections to all other neurons@see Fig. 1~a!#.
This organization of neurons is an idealization of neuro
structures found in the brain, and has been studied previo
with rate models@1# and numerical simulations@9#. To facili-
tate analysis, we impose a structural symmetry on the
work by using neurons with identical parameters, excitat

FIG. 1. ~Color! ~a! Diagram of the network. There areN neurons
~blue circles, six shown!. The red and black lines are excitator
~strength GE) and inhibitory connections~strength GI), respec-
tively. ~b! Phase diagram. Here,c5 ln(V0 /Vth), and g5 ln@Ith /(V0

2ER)#. The red line is given byGE5c, and the black line is given
by Eq. ~11!. When (GI ,GE) is on the black line, the network al
ways selects the neuron with the maximum input as the winner
©2002 The American Physical Society22-1
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connections with the same strength, and inhibitory conn
tions with the same strength. Also, we neglect the ti
course of the spikes and the time delay of spike transm
sions. The external inputs are modeled as constant curr
injected to the neurons.

When inhibition and/or excitation are strong enough,
network performs a WTA computation for all possible exte
nal inputs and initial states of the network@see Fig. 1~b!#.
The computation is done as soon asthe winnerspikesonce.
This is because the inhibition from the winner prevents ot
neurons from spiking. In general, the selection of the win
can be strongly influenced by the distribution of the exter
inputs and by the initial states of the network. When t
maximum external input is distinctively larger than all oth
external inputs, the neuron with the maximum external in
will be the winner for all initial states of the network. Othe
neurons can at most have transient spikes if their ini
membrane potentials are high enough. On the other han
a group of neurons get external inputs close to the maxim
input, the network is multistable, and any neuron in t
group can be the winner. As to which neuron will be t
actual winner depends largely on their initial membrane
tentials. For the network to always select the neuron w
maximum input as the winner for all possible external inp
and initial states, the excitation and inhibition must satisf
special relationship@the black line in Fig. 1~b!#. Previous
studies of fast WTA computation in spiking recurrent n
works have relied on intuition@3,14# and numerical simula-
tions@9#. These studies have shown that strong inhibition c
promote fast WTA computation. However, they have miss
the role of the excitation and the complexity of the WT
dynamics. Our analysis shows that a stronger self excita
causes the winner to spike more frequently and inhibit ot
neurons more effectively, and thus helps to promote a W
computation even with a weak inhibition. The previous stu
ies all assumed a particular initial state of the networks—
neurons are at the resting membrane potential, and prop
that the winner will be the neuron with the maximum exte
nal input. In the brain, this assumption is too restrictive sin
the membrane potentials of the neurons often deviate f
the resting membrane potential because of noise and th
puts from other brain areas. Our analysis shows that in
states of the network can strongly influence the selection
the winner, depending on the distribution of the external
puts.

The dynamics of the network is analyzed by construct
‘‘spike-timed potential map’’~STPM!. For a network of
integrate-and-fire neurons with pulse couplings, the dyna
cal variables are the membrane potentials. Therefore, we
construct maps between the membrane potentials at diffe
times. A STPM is constructed relative to the spike times
one of theN neurons. In particular, the membrane potenti
just before the neuron spikes are mapped to those just be
the neuron spikes again. Once the map is constructed
analyze the iteration dynamics of the map to understand
convergence properties of the spiking dynamics. Constr
ing nonlinear maps is a common technique for analyzing
dynamics of spiking neural networks and pulse-coupled
cillators in general. Over the years, maps between phase
05192
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spike times have been proposed by various authors@12,15#.
However, these maps are most useful for analyzing sync
nous or asynchronous states of the network, since they
assume that neurons spike with the same or nearly the s
frequency. STPM is more general, and is especially suita
for analyzing states such as WTA, in which neurons ha
very different spiking frequencies. Maps similar to STP
may also be useful for analyzing other physical and biolo
cal systems that can be modeled as pulse-coupled oscilla
@12,16#.

We now calculate the STPM relative to neuronk, one of
theN neurons. The membrane potentialsVj , j 51, . . . ,N sat-
isfy the following integrate-and-fire equations:

t
dVj

dt
5ER2Vj1I j2gj

E~ t !Vj2gj
I~ t !~Vj2ER!, ~1!

where constantsER and I j are the membrane resting pote
tial and the external input, respectively, andt is the mem-
brane time constant. Quantitiesgj

E(t) and gj
I (t) are excita-

tory and inhibitory conductances, respectively, and sat
gj

E(t)5GE(ntd(t2t j
(n)), and gj

I (t)5GI(m,mÞ j (ntd(t
2tm

(n)). Here, GE.0 is the strength of the self-excitator
connections,GI.0 is the strength of the inhibitory connec
tions between all neurons, andtm

(n) is the nth spike time of
neuronm. Both GE and GI are dimensionless, as they a
defined relative to the passive leak conductance of the n
ron. We take the reversal potentials of the excitatory a
inhibitory connections as 0 andER @17#, respectively. Neu-
ron j spikes whenVj5Vth , and is reset toVj5V0. Here, the
constantsVth and V0 are the threshold and the reset pote
tials, respectively, and satisfyER,V0,Vth,0. The external
inputs are assumed to be large enough to make neurons
in absence of couplings with other neurons, i.e.,I j.Vth
2ER[I th , whereI th is the threshold current.

Consider the effects of thenth spike of neuronk at t
5tk

(n) . Let the membrane potentials right before the spike
beVj (tk

(n)2)5Vj
(n) , j 51, . . . ,N. Obviously,Vk

(n)5Vth . The
d function coupling between neurons cause discontinu
jump of membrane potentials. Following the spike, the me
brane potential of neuronk is reset, soVk5V0. The neuron
receives an excitatory input immediately because of
excitatory connection to itself, thereforeVk jumps to a
new valueVk(tk

(n)1). Dividing both sides of Eq.~1! with
Vk(t) and integrating from tk

(n)2 to tk
(n)1 , we find

t ln„Vk(tk
(n)1)/V0…52tGE @18#. Therefore,

Vk~ tk
(n)1!5~12aE!V0 , ~2!

whereaE[12exp(2GE). Similarly, since all other neuron
receive an inhibitory input from neuronk, we have

Vj~ tk
(n)1!5~12a I !Vj

(n)1a IER , ~3!

where,a I[12exp(2GI). To avoid runaway spiking of neu
ron k, we must haveVk(tk

(n)1),Vth , or equivalentlyaE

,(V02Vth)/V0. This imposes an upper bound forGE @the
red line in Fig. 1~b!#. With the constraint onGE and Eq.~1!,
it is easy to prove thatER,Vj (t),Vth for all time.
2-2
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FAST COMPUTATION WITH SPIKES IN A RECURRENT . . . PHYSICAL REVIEW E 65 051922
Now we calculate the membrane potentials$Vj
(n11)% just

before neuronk spikes again. In between thenth and (n
11)-th spikes of neuronk, neuronj Þk can spike any num-
ber of times depending onGE ,GI and $Vj

(n)%. The simplest
case is that all neurons do not spike in this time span. T
gives the ‘‘0-spike branch’’ of the STPM relative to neuronk.
Other cases, where some neurons spike before neurk
spikes again, are in general more complicated to constru

To calculate the 0-spike branch, we integrateVk from t
5tk

(n)1 until Vk(tk
(n11))5Vth using Eq.~1!, at which point

the neuron spikes again. From this we find that the ti
interval Tk between successive spikes of neuronk is a con-
stant: Tk5tk

(n11)2tk
(n)5t ln@(Ik1ER2V01aEV0)/(Ik2Ith)#.

IntegratingVj from tk
(n)1 to tk

(n11) for all other neurons, we
find

Vj
(n11)5Fk j~Vj

(n)!5Lk j1MkVj
(n) , ~4!

where Lk j5I j1ER2(I j1ER2a IER)exp(2Tk /t), and 0
,Mk5(12a I)exp(2Tk /t),1. Equation ~4! gives the
0-spike branch. This branch is a linear map. For the 0-sp
branch to be valid, we must enforce the consistency co
tion that all neurons do not spike betweentk

(n)1 and tk
(n11) .

This is equivalent to the requirement thatFk j(Vj
(n)),Vth , or

Vj
(n),Vj

(k,0)[(Vth2Lk j)/Mk for all j Þk.
It is possible that the STPM relative to neuronk has only

the 0-spike branch. For this to happen, we need to show
Vth,Vj

(k,0) . Algebraic manipulations simplify this conditio
into

I k2I th.h~ I j2I th! ~5!

for all j Þk. Here,h5(Vth2V01aEV0)/a I I th .
When Eqs.~5! are satisfied, neuronk becomes a winner

i.e., the only neuron that spikes in subsequent time, as s
as it spikesonce. Moreover, the membrane potentials of a
other neurons quickly settle down to periodic subthresh
oscillations. To see this, we note that the iteration dynam
of the STPM has one fixed point. This fixed point is globa
stable, since the slopeMk of the STPM, now a linear map, i
positive but smaller than one. The spiking of neuronk is
periodic right from the start, since its dynamics is unaffec
by other neurons. Equations~5! carves out a subspace in th
N-dimensional Euclidean space of the external inputsI j
.I th , j 51, . . . ,N. In this subspace, neuronk is the winner if
it spikes once.

Whenh,1, or equivalently

aE~2V0!1a I I th.Vth2V0 , ~6!

the network operates completely in a WTA mode@see
Fig.1~b!#. In other words, for all possible external inputs, t
network always settles down to a WTA state. We can ea
show this by the following proof-by-contradiction argumen
Suppose that there areM.1 neurons spike in the stead
state. We can label these spiking neurons according to
external inputs, so thatI 1>I 2>•••>I M . It follows, then,
I 12I th.h(I j2I th) for all 2, j ,M . But the above relations
are nothing but Eqs.~5!, according to which neuron on
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should be a winner over the other spiking neurons as soo
it spikes once. Hence, the assumption that more than
neuron are spiking in the steady state is wrong, and the
work is indeed operating in a WTA mode. From Eq.~6!, we
see that both strong inhibition and strong excitation helps
promote the WTA computation.

It is easy to prove that the neuron with the maximu
external input will be the winner as soon as it spikes on
For convenience of discussion, in the rest of the paper
will label neurons such thatI 1>I 2>•••>I N . We find I 1
2I th.h(I j2I th) for all 2, j ,N since h,1. Therefore,
neuron one, which has the maximum external input, satis
Eqs. ~5!, and will be the winner if it spikes once. If th
maximum input is so large that no other external inputs c
satisfy Eqs.~5!, the neuron with the maximum input will be
the winner for all possible initial conditions of the networ
With our labeling scheme, this condition can be expresse

I 12I th.~ I 22I th!/h. ~7!

In this case, other neurons canat mosthave transient spikes
if their initial membrane potentials are high enough. T
WTA is likely done as soon as thefirst spikeappears in the
network, since usually membrane potentials of the neur
are near the resting membrane potential initially, and the n
ron with the maximum input will be the first to spike. Equ
tion ~7! is the condition for the winner to be complete
determined by the external inputs.

If several external inputs satisfy Eqs.~5! ~this is possible
sinceh,1), more than one neuron can be the winner, i
the network can be multistable. In this case, the winne
determined by both the external inputs and the initial me
brane potentials. The conditions forM,N neurons to be
potential winners are

I M2I th.~ I M112I th!/h, ~8!

I M2I th.h~ I 12I th!. ~9!

Equation~8! ensures that neuronsM11, . . . ,N are losers to
one of the neurons 1, . . . ,M , and Eq.~9! ensures that all
neurons 1, . . . ,M can be potential winners. The losing ne
rons can at most have transient spikes, whereas the pote
winners will be the only neuron spiking after it spikes onc
The initial states of the network can strongly influence wh
of the neurons 1, . . . ,M spikes first, hence, will be importan
for selecting the winner. A special case of multistability
when

I N2I th.h~ I 12I th!. ~10!

This condition is satisfied nearI 15I 25•••5I N . Here, Eqs.
~5! hold for all neurons in the network. Therefore, whoev
spikes first will be the winner, and the WTA computation
alwaysdone as soon as thefirst spikeappears in the network
The initial membrane potentials have strong influence on
termining the winner.

Whenh51, or equivalently

aE~2V0!1a I I th5Vth2V0 , ~11!
2-3
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DEZHE Z. JIN AND H. SEBASTIAN SEUNG PHYSICAL REVIEW E65 051922
the network operates in a WTA mode unless the maximum
the external inputs is shared by more than one neuron. M
over, the neuron with the maximum input will always be t
winner regardless of the initial states of the network. In t
case, the network is a robust maximum input selector.
spiking frequency of the winner monotonically increas
with the increase of the maximum input. This mode of co
putation is useful for implementing universal computati
@5# or a hierarchical model of vision@6#. From Eq.~11! we
see that robust maximum selector requires a careful tunin
the strength of the excitation and inhibition. Previous int
tive and numerical studies of WTA spikes have all miss
this point @3,9,14#.

Whenh.1, the network does not operate completely in
WTA mode. The network will still settle down to a WTA
state if Eq.~7! is satisfied. Otherwise, the network settles
cospiking states with more than one neuron spiking. Th
states are in general quite complicated to analyze comple
-
s.
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Special cases with a few neurons spiking can be analyze
constructing STPM beyond the 0-spike branch. Details w
be published elsewhere.

In summary, we have exhibited a recurrent network t
performs a fast winner-take-all computation. To facilita
analytical calculations, we made simplifications that are
completely biological. For example, the mutual inhibitio
between the neurons are really mediated by interneuron
the brain. However, as long as the response time of the
terneurons is much faster than the spike time intervals of
neurons, our results should still apply. Similarly, the om
sion of the time course of the spikes and the time delay
spike transmissions are not important, provided that th
times are much smaller than the interspike intervals of
neurons.

We thank Dr. Ken Miller, Dr. Alessandro Treves, and D
Carson Chow for useful discussions. This work was s
ported by Howard Hughes Medical Institute.
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